Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Lancet Diabetes Endocrinol ; 10(11): 786-794, 2022 11.
Article in English | MEDLINE | ID: covidwho-2106221

ABSTRACT

BACKGROUND: An increased prevalence of diabetic ketoacidosis at diagnosis of type 1 diabetes in children was observed in various diabetes centres worldwide during the COVID-19 pandemic. We aimed to evaluate trends in the prevalence of diabetic ketoacidosis at diagnosis of paediatric type 1 diabetes before and during the COVID-19 pandemic, and to identify potential predictors of changes in diabetic ketoacidosis prevalence during the pandemic. METHODS: For this international multicentre study, we used data from 13 national diabetes registries (Australia, Austria, Czechia, Denmark, Germany, Italy, Luxembourg, New Zealand, Norway, Slovenia, Sweden, USA [Colorado], and Wales). The study population comprised 104 290 children and adolescents aged 6 months to younger than 18 years, who were diagnosed with type 1 diabetes between Jan 1, 2006, and Dec 31, 2021. The observed diabetic ketoacidosis prevalence in 2020 and 2021 was compared to predictions based on trends over the pre-pandemic years 2006-19. Associations between changes in diabetic ketoacidosis prevalence and the severity of the COVID-19 pandemic and containment measures were examined with excess all-cause mortality in the whole population and the Stringency Index from the Oxford COVID-19 Government Response Tracker. FINDINGS: 87 228 children and adolescents were diagnosed with type 1 diabetes between 2006 and 2019, 8209 were diagnosed in 2020, and 8853 were diagnosed in 2021. From 2006 to 2019, diabetic ketoacidosis at diagnosis of type 1 diabetes was present in 23 775 (27·3%) of 87 228 individuals and the mean annual increase in the prevalence of diabetic ketoacidosis in the total cohort from 2006 to 2019 was 1·6% (95% CI 1·3 to 1·9). The adjusted observed prevalence of diabetic ketoacidosis at diagnosis of type 1 diabetes was 39·4% (95% CI 34·0 to 45·6) in 2020 and 38·9% (33·6 to 45·0) in 2021, significantly higher than the predicted prevalence of 32·5% (27·8 to 37·9) for 2020 and 33·0% (28·3 to 38·5) for 2021 (p<0·0001 for both years). The prevalence of diabetic ketoacidosis was associated with the pandemic containment measures, with an estimated risk ratio of 1·037 (95% CI 1·024 to 1·051; p<0·0001) per ten-unit increase in the Stringency Index for 2020 and 1·028 (1·009 to 1·047; p=0·0033) for 2021, but was not significantly associated with excess all-cause mortality. INTERPRETATION: During the COVID-19 pandemic, there was a marked exacerbation of the pre-existing increase in diabetic ketoacidosis prevalence at diagnosis of type 1 diabetes in children. This finding highlights the need for early and timely diagnosis of type 1 diabetes in children and adolescents. FUNDING: German Federal Ministry for Education and Research, German Robert Koch Institute, German Diabetes Association, German Diabetes Foundation, Slovenian Research Agency, Welsh Government, Central Denmark Region, and Swedish Association of Local Authorities and Regions.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Diabetic Ketoacidosis , Adolescent , Child , Humans , Diabetic Ketoacidosis/diagnosis , Diabetic Ketoacidosis/epidemiology , Diabetic Ketoacidosis/complications , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/complications , COVID-19/diagnosis , COVID-19/epidemiology , Pandemics , Prevalence , Registries
2.
Arch Dis Child ; 107(9): 790-795, 2022 09.
Article in English | MEDLINE | ID: covidwho-2001796

ABSTRACT

Type 1 diabetes (T1D) is a chronic autoimmune disease of childhood affecting 1:500 children aged under 15 years, with around 25% presenting with life-threatening diabetic ketoacidosis (DKA). While first-degree relatives have the highest risk of T1D, more than 85% of children who develop T1D do not have a family history. Despite public health awareness campaigns, DKA rates have not fallen over the last decade. T1D has a long prodrome, and it is now possible to identify children who go on to develop T1D with a high degree of certainty. The reasons for identifying children presymptomatically include prevention of DKA and related morbidities and mortality, reducing the need for hospitalisation, time to provide emotional support and education to ensure a smooth transition to insulin treatment, and opportunities for new treatments to prevent or delay progression. Research studies of population-based screening strategies include using islet autoantibodies alone or in combination with genetic risk factors, both of which can be measured from a capillary sample. If found during screening, the presence of two or more islet autoantibodies has a high positive predictive value for future T1D in childhood (under 18 years), offering an opportunity for DKA prevention. However, a single time-point test will not identify all children who go on to develop T1D, and so combining with genetic risk factors for T1D may be an alternative approach. Here we discuss the pros and cons of T1D screening in the UK, the different strategies available, the knowledge gaps and why a T1D screening strategy is needed.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Ketoacidosis , Adolescent , Autoantibodies , Child , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/genetics , Diabetic Ketoacidosis/diagnosis , Humans , Mass Screening , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL